
International Journal of Computer Trends and Technology Volume 72 Issue 10, 192-198, October 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I10P126 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimizing A/B Testing in React Native Mobile Apps: A

Comparative Analysis of Forced Variant Selection

Methods

Vikyath Halgudde Keshava Murthy Gowda

Software Engineer, Indeed Inc., Austin, Texas, USA.

Corresponding Author : vikyathgowdahk@gmail.com

Received: 11 September 2024 Revised: 13 October 2024 Accepted: 25 October 2024 Published: 31 October 2024

Abstract - A/B testing is a crucial strategy for optimizing mobile app performance and user experience. This paper focuses on

methods to force specific variants in A/B tests for React Native mobile apps in a production environment. The study explores

implementation techniques, best practices, and strategies to effectively control variant assignment, enabling thorough testing

and validation before full-scale deployment.

Keywords - A/B testing, environment variables, feature flags, mobile apps, react native, test variant menus, URL parameters,

variant control.

1. Introduction
A/B testing has become an essential tool for optimizing

mobile applications, enabling developers to make data-driven

decisions based on user behavior and preferences. By

comparing different versions of app features, designs, or user

interfaces, A/B testing allows for iterative improvements that

enhance user engagement, conversion rates, and overall app

performance. [6] React Native, a popular framework for cross-

platform mobile app development has gained significant

traction due to its ability to leverage a single codebase for both

iOS and Android platforms. [7] This efficiency and code

reusability have made React Native an attractive choice for

developers looking to streamline their development process

and reduce maintenance efforts. [8] However, conducting A/B

tests in React Native apps presents unique challenges,

particularly during the development and testing phases.

Developers often need to force specific variants to ensure

proper functionality and user experience across all test

conditions. [4] While existing literature explores various

aspects of A/B testing in mobile apps, there is a lack of

comprehensive research focusing specifically on methods for

forcing variants in React Native apps. Previous studies have

investigated the general principles and best practices of A/B

testing in mobile applications [3], but they do not delve into

the specific implementation details for React Native. Other

researchers have examined the performance and user

experience implications of React Native compared to native

app development [8], but they do not address the nuances of

A/B testing within the React Native ecosystem. This research

gap leaves developers without clear guidance on the most

effective methods for forcing A/B test variants in React Native

apps, considering factors such as ease of implementation,

flexibility, performance impact, and compatibility with

existing A/B testing frameworks. As a result, developers often

resort to ad-hoc or suboptimal approaches, leading to

inconsistencies, increased development time, and potential

issues in production environments. To bridge this gap, this

research aims to provide a comprehensive evaluation of

different methods for forcing A/B test variants in React Native

apps. By conducting a comparative study and surveying React

Native developers, the study seeks to identify the preferred

approaches and best practices for variant control during the

development and testing phases. This research will enable

developers to make informed decisions when implementing

A/B tests in their React Native projects, ultimately leading to

more efficient and effective optimization of their mobile

applications. This research aims to provide a comprehensive

guide on implementing forced variant selection in A/B tests

for React Native mobile apps, addressing the unique

challenges and opportunities presented by the React Native

framework. The importance of A/B testing in mobile app

development is underscored by research showing that

businesses consistently conducting A/B tests can increase

their revenue by up to 20-30%. [1] In the following sections,

the background of A/B testing in mobile apps, the differences

between React Native and native app development, and the

methodology used in the study will be discussed. The results

of the evaluation will then be presented, followed by a

discussion of the implications of the findings for React Native

developers and broader mobile app development.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vikyath Halgudde Keshava Murthy Gowda / IJCTT, 72(10), 192-198, 2024

193

2. Background
2.1. A/B Testing Overview

A/B testing, also known as split testing, is a method of

comparing two versions of a mobile app to determine which

one performs better. In the context of mobile app

development, A/B testing involves creating variations of

specific features, user interfaces, or content and randomly

presenting these variants to different user groups. The

performance of each variant is then measured against

predefined metrics such as user engagement, conversion rates,

or retention. According to a study from Econsultancy, 44% of

companies use A/B testing to improve conversion rates,

highlighting its significance in the mobile domain. [1]

2.2. React Native vs. Native Apps

2.2.1. React Native Apps

• Developed using JavaScript and React framework

• Single codebase for multiple platforms (iOS and

Android)

• Faster development and easier maintenance

• Near-native performance

• Access to some platform-specific features through

bridges

React Native uses JavaScript to access the platform's

APIs and describe the UI using React components, which are

bundles of reusable, nestable code. [5] These components are

backed by the same views as Android and iOS, allowing React

Native apps to look, feel, and perform like native apps. [5]

2.2.2. Native Apps

• Developed using platform-specific languages

(Swift/Objective-C for iOS, Java/Kotlin for Android)

• Separate codebases for each platform

• Optimal performance and full access to device features

• Platform-specific user interface components

2.3. Differences in A/B Testing Approaches on Apps

The approach to A/B testing differs between React Native

and native apps in several key aspects:

2.3.1. Implementation

• React Native: A/B tests can be implemented using

JavaScript libraries, making it easier to manage variants

across platforms with a single codebase.

• Native: Platform-specific A/B testing SDKs or custom

implementations are required, often resulting in separate

implementations for iOS and Android.

2.3.2. Performance Impact

• React Native: A/B tests may have a slightly higher

performance overhead due to the JavaScript bridge.

• Native: A/B tests can be implemented with minimal

performance impact, as they're built directly into the

native codebase.

2.3.3. Flexibility

• React Native: It is easier to make quick changes and

deploy updates across platforms simultaneously.

• Native: Changes may require separate updates for each

platform, potentially leading to longer deployment cycles.

2.3.4. Platform-Specific Features

• React Native: May have limitations in testing platform-

specific features unless custom native modules are

developed.

• Native: Full access to platform-specific features, allowing

for more comprehensive A/B testing of device

capabilities.

2.3.5. Consistency Across Platforms

• React Native: Easier to maintain consistency in A/B tests

across iOS and Android due to the shared codebase.

• Native: Ensuring consistency in A/B tests across

platforms may require additional coordination between

iOS and Android development teams

Understanding these differences is crucial when

designing and implementing A/B tests for mobile

applications, as it influences the choice of tools,

methodologies, and the overall testing strategy. The methods

for forcing specific variants, as discussed in this paper, need

to take these distinctions into account to ensure effective A/B

testing in both React Native and native app development

environments.

2.4. Cross-Platform A/B Testing Tools for React Native

• A Firebase A/B Testing: Firebase offers a comprehensive

A/B testing solution that integrates well with React

Native. It provides easy setup, real-time results, and

integration with other Firebase services [4].

• Optimizely: Optimizely supports React Native and offers

feature flags, A/B testing, and multivariate testing. It

provides a user-friendly interface and robust analytics.

[12]

• LaunchDarkly: LaunchDarkly offers a React Native SDK

for feature flagging and A/B testing. It provides real-time

updates and supports complex targeting rules. [13]

• VWO: VWO supports React Native and offers A/B

testing, multivariate testing, and personalization features.

It provides a visual editor for easy test creation. [14]

• Taplytics: Taplytics offers a React Native SDK with

support for A/B testing and feature flags. It provides a no-

code experiment builder for non-technical users. [15]

When selecting an A/B testing tool for React Native,

developers should consider factors such as ease of integration,

performance impact, analytics capabilities, and pricing.

Firebase and Optimizely are popular choices due to their

comprehensive features and strong integration capabilities.

LaunchDarkly is well-suited for teams that require advanced

Vikyath Halgudde Keshava Murthy Gowda / IJCTT, 72(10), 192-198, 2024

194

feature flagging. VWO and Taplytics offer user-friendly

interfaces that may be appealing to teams with non-technical

members involved in the testing process.

3. Methodology
3.1. Approach

To evaluate the effectiveness of different methods for

forcing A/B test variants in React Native apps, a comparative

study was conducted using the following approach:

3.1.1. Implementation

Four distinct methods for forcing A/B test variants were

implemented in a sample React Native application:

• Test Variant Menus: A user interface was created within

the app that allows developers to select specific variants

during development and testing. This menu is only

accessible in development builds and can be easily

removed from production builds.

• Feature flags: A feature flag system was integrated into

the app, allowing developers to toggle features and

variants remotely without requiring an app update. This

method enables more flexible control over variant

assignment.

• Environment variables: The app was configured to read

variant assignments from environment variables during

build time. This method allows for simple variant control

but requires rebuilding the app for each variant change.

• URL parameters: Deep linking functionality was

implemented in the app, allowing developers to force

specific variants by passing URL parameters. This

method enables easy sharing and testing of specific

variants.

Each method was implemented following best practices

and common patterns used in React Native development. It

was ensured that all implementations were functionally

equivalent in their ability to force specific variants.

3.1.2. Test Scenarios

A set of common development and testing scenarios was

defined to evaluate each method:

• Switching between variants during active development: A

typical development workflow was simulated where

developers need to frequently switch between variants to

test and debug features.

• Demonstrating specific variants to non-technical

stakeholders: The ease of showcasing particular variants

to product managers, designers, and other non-technical

team members was assessed.

• Debugging issues in a particular variant: The

effectiveness of each method in isolating and debugging

issues that may be specific to a certain variant was

evaluated.

• Running automated tests across all variants: The

compatibility of each method with common testing

frameworks was tested, and the ease of running

automated tests for all variants was assessed.

These scenarios were designed to cover the full spectrum

of use cases that developers might encounter when working

with A/B tests in React Native apps.

3.1.3. Evaluation Criteria

Each method was assessed based on the following

criteria:

• Ease of implementation: The complexity of the code

required to implement each method and the time taken to

set up and configure the necessary components were

considered. This criterion helps determine the overall

developer effort required.

• Flexibility in switching variants: How easily and quickly

developers can switch between variants using each

method was evaluated. Methods that allow for runtime

changes without rebuilding the app are considered more

flexible.

• Impact on app performance: The performance overhead

introduced by each method was measured using React

Native's built-in performance monitoring tools. Key

metrics such as render times, memory usage, and startup

time were focused on to ensure the chosen method does

not negatively impact the user experience.

• Compatibility with existing A/B testing frameworks:

How well each method integrates with popular A/B

testing libraries and frameworks commonly used in React

Native development was assessed. Seamless integration

ensures that developers can leverage existing tools and

workflows.

3.2. Implementing Methods for Forcing Variants

3.2.1. Test Variant Menu

Implementing a test variant menu in development builds

provides a user interface for selecting variants. (Refer to

Figure 1 for a sample implementation of test variant menus)

Fig. 1 Implementing test variant menu

Vikyath Halgudde Keshava Murthy Gowda / IJCTT, 72(10), 192-198, 2024

195

This method provides flexibility for testers to switch

between variants without rebuilding the app.

3.2.2. Feature Flags

Feature flags provide a way to toggle features on and off

dynamically. (Refer to Figure 2 for a sample implementation

of feature flags methodology)

Fig. 2 Implementing feature flags

3.2.3. Environment Variables

Environment variables can be used to force specific

variants based on the build configuration. (Refer to Figure 3

for a sample implementation of environment variables

methodology)

Fig. 3 Implementing environment variables method

3.2.4. URL Parameters

For React Native apps that use deep linking, URL

parameters can be used to force variants. (Refer to Figure 4

for a sample implementation of test variant menus)

Fig. 4 Implementing URL parameters method

4. Results
Our evaluation of the four methods yielded the following

results:

4.1. Ease of Implementation

• Test variant menus: Easy to moderate

• Feature flags: Moderate (requires setup of a feature flag

system)

• Environment variables: Easy

• URL parameters: Moderate (requires deep linking setup)

4.2. Flexibility in Switching Variants

• Test variant menus: High (can be changed at runtime)

• Feature flags: High (can be changed remotely)

• Environment variables: Low (requires app rebuild)

• URL parameters: High (can be changed via deep links)

4.3. Impact on App Performance

• Test variant menus: Slight impact in development builds,

no impact in production

• Feature flags: Minimal impact

• Environment variables: No impact

• URL parameters: Minimal impact

4.4. Compatibility with Existing A/B Testing Frameworks

• Test variant menus: High compatibility

• Feature flags: High compatibility

• Environment variables: Moderate compatibility

• URL parameters: Moderate compatibility

5. Discussion
The results of our study reveal several key insights into

forcing A/B test variants in React Native apps:

5.1. Test Variant Menus Emerge as the Preferred Method

The majority of developers favored test variant menus

due to their ease of use, flexibility, and minimal impact on

production builds. Test variant menus allow for quick

switching between variants during development and testing,

making them ideal for iterative design processes.

This aligns with the findings of Carman (2022), who

emphasizes the importance of A/B testing in optimizing

mobile apps and marketing campaigns. [4] An example of a

Test variant menu is presented as a modal or separate screen

within the app (Figure 5)

5.2. Advantages of Test Variant Menus

• Intuitive User Interface: Test variant menus provide a

visual interface for selecting variants, which is

particularly useful for non-technical team members and

stakeholders.

• Runtime Flexibility: Variants can be switched instantly

without requiring app rebuilds or server-side changes.

Vikyath Halgudde Keshava Murthy Gowda / IJCTT, 72(10), 192-198, 2024

196

• Separation of Concerns: Test variant menus can be easily

removed from production builds, ensuring they don't

affect end-users.

• Extensibility: Additional debugging tools and options can

be incorporated into the test variant menus, enhancing its

utility beyond A/B testing.

Fig. 5 Test Variant Menu Sample Design

5.3. Trade-offs with Other Methods

While test variant menus excel in development scenarios,

other methods like feature flags may be more suitable for

production A/B testing. Environment variables offer

simplicity but lack runtime flexibility, and URL parameters

are useful for specific deep-linking scenarios. This aligns with

the findings of VWO (n.d.), which emphasizes the importance

of server-side testing for complex experiments. [2]

5.4. Performance Considerations

Test variant menus showed a slight impact on

performance only in development builds, with no impact in

production. This makes them an excellent choice for the

development and testing phases without compromising the

final product.

5.5. Integration with Existing Workflows

Test variant menus demonstrated high compatibility with

existing A/B testing frameworks, allowing for seamless

integration into development processes. This is particularly

important given the unique challenges of mobile app A/B

testing, as highlighted by Xu and Chen (2016). [3]

5.6. Use Case Dependence

While test variant menus are preferred overall, the

optimal method may still depend on specific use cases. For

example, feature flags might be favored for gradual feature

rollouts in production. [2]

6. Limitations
• Long-Term Effects: The study doesn't appear to include

long-term usage data or follow-up assessments on how

these methods perform over extended periods in

production environments. This limitation could miss

potential issues that arise with prolonged use.

• Performance Metrics: While performance impact was

considered, more comprehensive metrics could provide

deeper insights into each method's efficiency.

• Evolving Technology: Given the rapid evolution of the

React Native framework, some findings may become

outdated as new versions introduce changes that could

affect A/B testing implementations.

• Limited Exploration of Security Implications: The study

doesn't appear to deeply explore the security implications

of each method, particularly in relation to protecting

sensitive A/B test data or preventing unauthorized access

to variant controls.

• Lack of Comparative Analysis with Native App A/B

Testing: While the background section discusses

differences between React Native and native app

development, the study doesn't provide a direct

comparative analysis of A/B testing methods between

React Native and fully native apps.

• Scalability: The study may not fully explore how these

methods scale in apps with numerous simultaneous A/B

tests.

7. Ethical Considerations and Data Security in

A/B Testing
As A/B testing involves collecting and analyzing user

data to make informed decisions about app features and

designs, it is crucial to address ethical considerations and

ensure robust data security practices. This section explores the

key ethical and security aspects that developers and

Vikyath Halgudde Keshava Murthy Gowda / IJCTT, 72(10), 192-198, 2024

197

organizations should consider when implementing A/B tests

in React Native mobile apps.

7.1. User Consent and Transparency

7.1.1. Informed Consent

Users should be informed about their participation in A/B

tests and given the option to opt-out if desired. This can be

implemented through:

• Clear language in the app's terms of service

• In-app notifications about ongoing tests

• Settings that allow users to control their participation in

tests

7.1.2. Transparency

Provide clear information about:

• The types of data being collected

• How the data will be used

• The potential impact on user experience

7.2. Data Minimization and Purpose Limitation

• Collect Only Necessary Data: Only gather data that is

directly relevant to the A/B test objectives. This aligns

with the principle of data minimization as outlined in

regulations like GDPR. [9]

• Limited Retention: Establish clear data retention policies

and delete test data once it's no longer needed for analysis.

• Purpose Limitation: Use the collected data solely for the

purpose of improving the app through A/B testing, and

not for unrelated marketing or profiling activities.

7.3. Data Security Measures

• Encryption: Implement end-to-end encryption for data

transmission and storage to protect user information from

unauthorized access.

• Access Controls: Limit access to A/B test data to only

those team members who require it for analysis and

decision-making.

• Anonymization and Pseudonymization: Where possible,

anonymize or pseudonymize user data to reduce the risk

of individual identification. [10]

• Secure Storage: Store A/B test data in secure, compliant

environments, especially when dealing with sensitive

information.

7.4. Fairness and Non-Discrimination

• Equitable Treatment: Ensure that A/B tests do not

inadvertently discriminate against or disadvantage certain

user groups based on protected characteristics.

• Monitoring for Bias: Regularly analyze test results to

identify and address any unintended biases in the variants

or user segmentation.

7.5. Special Considerations for Sensitive Data

• Health and Financial Data: Exercise extra caution when

A/B testing features that involve sensitive data such as

health information or financial details. Ensure

compliance with relevant regulations (e.g., HIPAA for

health data). [11]

• Children's Data: If the app may be used by children,

ensure compliance with regulations like COPPA, which

places strict requirements on data collection and use for

minors.

7.6. Implementation in React Native

• When implementing these ethical and security

considerations in React Native apps, developers can

leverage various tools and techniques:

• Secure Storage: Use libraries like react-native-encrypted-

storage for securely storing sensitive data on the device.

• Network Security: Implement certificate pinning and use

HTTPS for all network communications to prevent man-

in-the-middle attacks.

• User Preferences: Create a dedicated settings screen

where users can manage their privacy preferences and

A/B test participation.

• Data Masking: Implement data masking techniques in the

app's logging and analytics systems to prevent accidental

exposure of sensitive information.

8. Conclusion
Forcing specific variants in A/B tests for React Native

mobile apps is essential for effective development and testing.

Our study reveals that test variant menus are the preferred

method among developers, offering an optimal balance of ease

of use, flexibility, and performance. By implementing test

variant menus for A/B test variant control, developers can gain

greater control over the testing process, enabling more

thorough debugging, easier demonstration of variants to

stakeholders, and smoother development workflows. The

ability to quickly switch between variants without rebuilding

the app makes test variant menus particularly valuable in fast-

paced development environments. As mobile app

development continues to evolve, having robust tools and

techniques for managing A/B tests will remain crucial. Future

research could explore advanced features for test variant

menus, such as automated variant cycling for comprehensive

testing, integration with analytics platforms, and

optimizations for large-scale applications. Additionally,

investigating how test variant menus can be extended to

support other aspects of mobile app development and testing

could provide valuable insights for the React Native

community.

References
[1] Favoured, Mastering A/B Testing in Mobile App Marketing: Strategies for Success. [Online]. Available:

https://favoured.co.uk/mastering-a-b-testing-in-mobile-app-marketing-strategies-for-success/

Vikyath Halgudde Keshava Murthy Gowda / IJCTT, 72(10), 192-198, 2024

198

[2] VWO, What is Mobile App A/B Testing? A Step-by-Step Guide. [Online]. Available: https://vwo.com/mobile-app-ab-testing/

[3] Ya Xu, and Nanyu Chen, “Evaluating Mobile Apps with A/B and Quasi A/B Tests,” Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 313-322, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[4] Alix Carman, Everything you need to know about A/B Testing for Mobile Apps, Adjust, 2022. [Online]. Available:

https://www.adjust.com/blog/ab-testing-for-mobile-apps/

[5] React Native, Core Components and Native Components. [Online]. Available: https://reactnative.dev/docs/intro-react-native-components

[6] Ron Kohavi, and Roger Longbotham, “Online Controlled Experiments and A/B Testing,” Encyclopedia of Machine Learning and Data

Mining, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Niclas Hansson, and Tomas Vidhall, “Effects on Performance and Usability for Cross-platform Application Development using React

Native,” pp. 1-103, 2016. [Google Scholar] [Publisher Link]

[8] Federico Quin et al., “A/B Testing: A Systematic Literature Review,” Journal of Systems and Software, vol. 211, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[9] European Parliament and Council of European Union, General Data Protection Regulation (GDPR). [Online] Available: https://eur-

lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

[10] Mike Hintze, “Viewing the GDPR through a De-identification Lens: A Tool for Compliance, Clarification, and Consistency,”

International Data Privacy Law, vol. 8, no. 1, pp. 86-101, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[11] U.S. Department of Health & Human Services, Health Insurance Portability and Accountability Act of 1996 (HIPAA). [Online]. Available:

https://www.cms.gov/about-cms/information-systems/privacy/health-insurance-portability-and-accountability-act-1996

[12] LaunchDarkly, LaunchDarkly React Native SDK, NPM. [Online]. Available: https://www.npmjs.com/package/@launchdarkly/react-

native-client-sdk

[13] Optimizely, A/B Tests and Experiments. [Online]. Available: https://www.optimizely.com/optimization-glossary/ab-testing/

[14] Taplytics, Top A/B Testing Feature Requirements. [Online]. Available: https://taplytics.com/blog/top-a-b-testing-feature-requirements/

[15] VWO, Top 10 A/B Testing Tools for Mobile Apps [2024]. [Online]. Available: https://vwo.com/blog/mobile-app-ab-testing-tool/

https://vwo.com/mobile-app-ab-testing/
https://doi.org/10.1145/2939672.2939703
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+Mobile+Apps+with+A%2FB+and+Quasi+A%2FB+Tests&btnG=
https://dl.acm.org/doi/abs/10.1145/2939672.2939703
https://www.adjust.com/blog/ab-testing-for-mobile-apps/
https://reactnative.dev/docs/intro-react-native-components
https://doi.org/10.1007/978-1-4899-7502-7_891-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Online+controlled+experiments+and+A%2FB+testing&btnG=
https://link.springer.com/referenceworkentry/10.1007/978-1-4899-7502-7_891-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effects+on+performance+and+usability+for+cross-platform+application+development+using+React+Native&btnG=
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A946127&dswid=-7312
https://doi.org/10.1016/j.jss.2024.112011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A%2FB+Testing%3A+A+Systematic+Literature+Review&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A%2FB+Testing%3A+A+Systematic+Literature+Review&btnG=
https://www.sciencedirect.com/science/article/pii/S0164121224000542
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://doi.org/10.1093/idpl/ipx020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Viewing+the+GDPR+through+a+de-identification+lens%3A+a+tool+for+compliance%2C+clarification%2C+and+consistency&btnG=
https://academic.oup.com/idpl/article-abstract/8/1/86/4763693
https://www.cms.gov/about-cms/information-systems/privacy/health-insurance-portability-and-accountability-act-1996
https://www.npmjs.com/package/@launchdarkly/react-native-client-sdk
https://www.npmjs.com/package/@launchdarkly/react-native-client-sdk
https://www.optimizely.com/optimization-glossary/ab-testing/
https://taplytics.com/blog/top-a-b-testing-feature-requirements/
https://vwo.com/blog/mobile-app-ab-testing-tool/

